Super-Releaser Graduates from NYCEDC’s ELAB Program

Super-Releaser was selected to participate in NYCEDC’s 2016 Elab mentorship program with our Neucuff medical device concept.

Elab is a six month program organized by Mary Howard that supports early-career researchers in the medical field, providing them with classes, business development expertise, mentorship, and access to resources like venture funding, legal experts, and research databases. Super-Releaser was selected to continue the development of our Neucuff and explore options for developing it into a fully realized medical device.

Kari Love and I graduated from the program following a well received final summation of our research on the Neucuff and its transformative potential for children suffering from Cerebral Palsy.

You can learn more about the Elab program here.

The Neucuff – A Soft Robotic Exoskeleton

Over the past six months Kari Love and I have been developing a soft robotic elbow orthotic for Cerebral Palsy therapy. It’s still in the early stages of prototyping and testing, but it’s making rapid progress. If all goes as planned, it should be in the hands of a team of CP doctors specializing in robotic orthotics in the near future.

Here’s a bit more background from the Hackaday page:

The Neucuff is an extension of the soft robotics development I’ve been doing for the past three years as lead scientist at Super-Releaser. After creating manufacturing techniques for a few different flavors of soft robot, I felt it was time to find some practical applications for the technology.

I approached a ton of people about where soft robotics could be best applied. I talked with civil engineers about exploratory robots for mapping pipes in construction sites. I talked with NASA scientists about soft robots in space. The most promising ideas came from my father, an orthopedic surgeon specializing in arthroscopy and shoulder reconstruction, and my robotics mentor, who has spent the last ten years in the medical device field.

They both described problems with therapeutic robots that a soft robotics approach could solve. Soft robots are good at spreading force evenly across a large area. Soft robots are conformal so they can fit a wide variety of applications and environments by design. This makes them an ideal candidate for Cerebral Palsy therapy.

 

You can find out more detail along with downloads, video, and schematics here.