Speaking about Soft Robots at NASA Ames

Official Visitor

Mark Micire (research scientist at the Intelligent Robotics Group at NASA Ames) and Yun Kyung Kim (human-robot​ iInteraction​ ​designer at NASA Ames) were incredibly generous in offering me an opportunity to speak with the AstroBee and Super Ball Bot groups at NASA Ames. We’ve been keeping an eye on Super Ball Bot over at Super-Releaser, particularly because of the way the teams working on it are bringing simulation and iterative prototyping together to solve the open-ended problems involved in designing a robust control system for bots that can configure themselves into nearly infinite shapes.

The talk focused on the opportunities to use compliant materials to replicate organic mechanisms, the ways Super-Releaser solves problems in soft robotics, and the way we integrate multiple disciplines into our research. Afterwards I was able to see the work of the Super Ball Bot team – developing novel compliant actuators in addition to refining the systems that power their current Ball Bot prototypes.

I was also able to see the AstroBee, which was being evaluated on the biggest granite surface plate I’ve ever seen. I got to talk with Yun about her experience as a designer integrating into a team of engineers, which is its own challenge in itself, and the goals of the AstroBee project. It’s going to serve as a platform to develop behaviors for human/machine interaction in 0g, which is a problem I’ve never even considered.

“Hard Problems? Soft Robots!” at BsidesHH 2014

I’ve been going to CCC for a while. I’ve given some talks (mostly on the lightning talk track) and have generally had a good time. More and more, though, I’ve gotten interested in gatherings that orbit big events like CCC, Maker Faire, and HOPE. Unconferences, Bsides, and nether-conferences like BarCamp are less formal than a traditional conference, and often have the kind of wiggle room for instant breakout sessions and long Q&A.

Continue reading

Print Your Own Robot: Part 7

I am now the grinning overlord of a fully functional robotic tentacle. I’m quite pleased. After a few iterations, some hair pulling, and some utterly excellent help from programmer, hacker, and generally awesome person TQ, the Trefoil Tentacle is now waving about in all its eerie undulating glory. You can find a whole set of high res images of it here.

If you're craving an animated GIF of a tentacle wiggling about, this here's your image.

The control scheme is pretty simple: a barebones visual interface in Processing sends signals to an Arduino. From there, it switches the low power signal to high power via a Darlington transistor. The transistor switches each of 3 solenoid valves on and off, providing air to each of the 3 bladders inside of the silicone tentacle. The valves operate on a really slow PWM, their duty cycle determining how much air makes it to each bladder. Since there’s a bleed I can control on the system, I don’t have to worry about pumping air both in and out. I just adjust how much time the valves spend on, and the tentacle does it’s routine. All of the code for the setup is here on Adafruit’s forum. Continue reading

Print Your Own Robot: Part 6

Last week I headed up to Viridis3d for some more hacking. We got some beautiful results using some vaccuum casting with the trefoil design, parts printed for both the internals and outer shell of the quadruped, and schemes for tempting new mechanisms. All in all it’s been really exciting seeing the progress. Also, I have some updates on controlling the trefoil tentacle with an arduino powered set of air solenoids.

An assembled trefoil mold, in the vacuum chamber.

One of the confounding factors in getting this flavor of robot moving predictably has been how difficult it is to control wall thickness and bubble inclusions when casting the final silicone pieces. Like almost every mold, you do the best you can, try to create a nice, sterile, well ordered universe, and hope. Although Dragon Skin has performed really well as a durable, flexible silicone, it has the nasty habit of trapping bubbles in inconvenient spots when curing. Many silicones have a thin, pancake syrup consistency when mixed, but Dragon Skin is much more like honey or molasses, meaning it’s really easy to trap bubbles in the mix while stirring and have them set in place when everything’s curing. A good solution for the problem is pulling them back out with a vacuum chamber. Continue reading

Print Your Own Robot: Part 5 29c3

I’ve finally gathered my wits after a whirlwind tour of Europe, starting at CCC, giving some talks and connecting up with potential collaborators, to Berlin to meet hackers I hadn’t seen in years, to Brussels to play with some material science experiments in impact resisting plastics. While at CCC I gave three talks, two lightning talks on digital fabrication and the strange world of news advertisement, and a 15 minute talk on the methodology and philosophy behind my soft robots. I’ll be uploading the short talks sometime soon, but for now please see my soft robots lecture after the jump. Continue reading

Print Your Own Robot: Part 4

I have lots of updates to share. First, there’s a new video of the latest tentacle prototype in action below the fold. Second, We’ve made some excellent progress on the method of manufacture, reliability, and repeatability of the designs we’re producing. It’s almost at the point where we need to figure out a good real-world experiment to test our ideas against. I’m currently torn between creating a grasper and something that walks. Jim and I have been working out ways of getting a self contained power source inside of a soft robot, and it seems like we might be able to use a canister of compressed gas to do everything from timing movements to articulating valves. I’m working out ways of integrating peristaltic pumps and timing mechanisms that will be simple to prototype… which is a pretty tall order. However, I think a combo of laser cut bits and creative molding can have this one solved. Continue reading

Print Your Own Robot: Part 3 VIDEO!

After only six actual work days, a few afternoons spent on CAD, and a lot of tweaking, I’ve got a working robotic tentacle prototype! I used the hand pump off of a sphygmomanometer and a lot of sil-poxy, but it’s working in a rough and ready way. There’s video after the jump below.

I had to cut this one open to fully remove all the core and then sealed it back up. I think the next version will evacuate the core cleanly due to the powder tweaks we made, though. It could also use some revisions to the way it interfaces with the air supply. In the future I’m going to have to run some tests on adhering silicone to various plastics to see what will make for the most solid fittings. The sil-poxy infosheet says polyurethanes are a good candidate, so I might start there. Continue reading

Print Your Own Robot: Part 2

I just arrived back from a second session of hacking and casting with Jim Bredt over at Viridis3D, and I have to say I’m pretty excited. The biggest result of the most recent round of mold making is a successful method for getting soluble cores into printed molds and casting silicone around them reliably and repeatably. I ended up doing a lot of revisions to the casting method and industrial design based on the results of last month’s experiments. The mold goes together in new ways with changes to accommodate pouring the mold, reusing the outer shell, aligning the cores, printing the cores, and how it will get hooked up to pneumatics once everything’s cast and functioning. I’m especially proud of the design behind the base of the soluble core, which is tapered so that it can align and center itself within the mold even if its dimensions shrink by a few percent. The little ears on this base are both to align it rotationally (which doesn’t matter much as far as the tentacle is concerned, but could matter in other more complex molds) and to prevent the core dropping down further into the mold and mucking up the wall thickness if it shrinks more than spec. Continue reading

Print Your Own Robot: Part 1

Numi modeling one of the new Guy Fawkes bandanas.

I’ve had an outrageous streak of luck, lately. Firstly, I got a lovely plug from BoingBong (via the additionally lovely Xeni Jardin) that introduced a whole slew of new people to my store. Secondly, an event I’ve been hosting over at my shop, Craft Night, has been drawing an incredible crowd of excellent makers. It’s starting to feel like I’ve got a genuine tribe here in the city. Thirdly, I’ve finally been able to experiment with a technology I’ve been talking about and sketching for years: soft robots.

My friend, the extraordinary jeweler, maker, and programmer Aaron Waychoff, introduced me to Jim Bredt. Jim is many things. He moonlights as the human spotlight at the Ignobel Awards. He’s a metal smithing, mold making, 3d printing, material scientist, MIT professor. He also won an award for being a major ball buster when he taught “Introduction to Solid State Chemistry”. Continue reading