First to Blog

This is a response, more of a high five, to Zach Hoeken’s post up on MAKE: “First to File? Nah, First to Blog!” Basically his post was a series of ideas that have been hanging around in his notebooks, possibly eligible for patents, that he would rather see out there and made in the world than locked away between the pages of a personal sketchpad forever or exploited to the chagrin of mankind by some unruly technological entity, wrapped up in complex patent labyrinths, and never put to a more just use than in sole product from a sole company (see 3d Systems vs the Form 1, Patent Busting3d printing patent challenges, etc). Even worse is the possibility of an idea getting patented and never implemented, only used as a club to hit innovators over the wallet (see Intellectual Ventures). I’m in favor of this. Truth be told I’m pretty aggressively anti patent, which is why all of my recent robotics projects have been released into the open source. Although I realize there’s a difficult road ahead, finding ways to keep funding innovation and novel IP in the world patent abolitionists have been gunning for, I believe open access to information and the network effects it generates far far and away outweigh the small innovation boost you get from researchers confident they’ll be the only people able to profit from the particular idea they’re developing.

Continue reading

Print Your Own Robot: Part 8

Visit my soft robot Flickr collection for some detailed documentation and more info on the methods behind this latest robot.

Quadrupeds. I’ve been dreaming about quadrupeds. I’ve been hunting for challenges to test my methods and improve the engineering on the whole “print and cast a soft robot” thing (I really need to come up with a name for this… “Borgatronics?”). I started with tentacles because they were easy to design, easy to test, and symmetrical.

Continue reading

Print Your Own Robot: Part 7

I am now the happy owner of a fully functional robotic tentacle. I’m pleased. After a few iterations, some hair pulling, and some welcome help from programmer, hacker, and generally pleasant person: TQ, the Trefoil Tentacle is now waving around in disconcerting glory. You can find a whole set of high res images of it here.

If you’re craving an animated GIF of a tentacle wiggling about, this here’s your image.
Continue reading

Print Your Own Robot: Part 6

Last week I headed up to Viridis3d for some more hacking. We got some beautiful results using some vaccuum casting with the trefoil design, parts printed for both the internals and outer shell of the quadruped, and schemes for tempting new mechanisms. All in all it’s been really exciting seeing the progress. Also, I have some updates on controlling the trefoil tentacle with an arduino powered set of air solenoids.

Continue reading

Print Your Own Robot: Part 5 29c3

I’ve finally gathered my wits after a whirlwind tour of Europe, starting at CCC, giving some talks and connecting up with potential collaborators, to Berlin to meet hackers I hadn’t seen in years, to Brussels to play with some material science experiments in impact resisting plastics. While at CCC I gave three talks, two lightning talks on digital fabrication and the strange world of news advertisement, and a 15 minute talk on the methodology and philosophy behind my soft robots.

Continue reading

Foldy Zoetrope

I made little foldy zoetropes to send folks for the holidays. Now that they’re all sent out and people have had a chance to enjoy them, I figured I could reveal the design without anybody feeling less special. I should release the design and talk about the process behind making them. I should have time for that soon. In the meantime, check out the construction tutorial video after the fold.

Continue reading

Print Your Own Robot: Part 4

I have lots of updates to share. First, there’s a new video of the latest tentacle prototype in action below the fold. Second, We’ve made some excellent progress on the method of manufacture, reliability, and repeatability of the designs we’re producing. It’s almost at the point where we need to figure out a good real-world experiment to test our ideas against. I’m currently torn between creating a grasper and something that walks. Jim and I have been working out ways of getting a self contained power source inside of a soft robot, and it seems like we might be able to use a canister of compressed gas to do everything from timing movements to articulating valves. I’m working out ways of integrating peristaltic pumps and timing mechanisms that will be simple to prototype… which is a pretty tall order. However, I think a combo of laser cut bits and creative molding can have this one solved.

Continue reading

Print Your Own Robot: Part 3 VIDEO!

After only six actual work days, a few afternoons spent on CAD, and a lot of tweaking, I’ve got a working robotic tentacle prototype! I used the hand pump off of a sphygmomanometer and a lot of sil-poxy, but it’s working in a rough and ready way. There’s video after the jump below.

I had to cut this one open to fully remove all the core and then sealed it back up. I think the next version will evacuate the core cleanly due to the powder tweaks we made, though. It could also use some revisions to the way it interfaces with the air supply. In the future I’m going to have to run some tests on adhering silicone to various plastics to see what will make for the most solid fittings. The sil-poxy infosheet says polyurethanes are a good candidate, so I might start there.

Continue reading

Print Your Own Robot: Part 2

I just arrived back from a second session of hacking and casting with Jim Bredt over at Viridis3D, and I have to say I’m pretty excited. The biggest result of the most recent round of mold making is a successful method for getting soluble cores into printed molds and casting silicone around them reliably and repeatably. I ended up doing a lot of revisions to the casting method and industrial design based on the results of last month’s experiments. The mold goes together in new ways with changes to accommodate pouring the mold, reusing the outer shell, aligning the cores, printing the cores, and how it will get hooked up to pneumatics once everything’s cast and functioning. I’m especially proud of the design behind the base of the soluble core, which is tapered so that it can align and center itself within the mold even if its dimensions shrink by a few percent. The little ears on this base are both to align it rotationally (which doesn’t matter much as far as the tentacle is concerned, but could matter in other more complex molds) and to prevent the core dropping down further into the mold and mucking up the wall thickness if it shrinks more than spec.

Continue reading