Print Your Own Robot: Part 10

Long time no see, folks. I’ve got some great news for you. I’ve finally found a method for getting super complicated geometry locked inside of a seamless skin. It’s taken a lot of prototypes to get here, but I think the results are more than worth the effort. There are some wrinkles to iron out (which I’ll get to below) but all in all I think I’m incredibly close to rapid-fire casting working quadrupeds, ready to go in just a few short steps after popping the mold. In other good news, I’ll be dropping some files very soon which should get you your very own working quadruped using any FDM printer. All you need is a Makerbot or similar, a few hours, and some casting materials to have an exact duplicate of my most sophisticated robot to date.

Continue reading

Soft Robots

I’ve been working on this project for a few months, focused on changing how soft robots get designed and made. Traditionally these robots are complex to design and build, and they require and unexpectedly large amount of hand labor to stitch together. This ends up with parts being produced slowly, with small deviations from known working designs. I’ve been trying to come up with a method that allows you to design a robot in CAD, queue up the design on a powder printer, cast silicone into the printed mold, and pull out a working robot. The idea is to allow for a huge variety of geometry, experimentation, and prototypes that are quick and inexpensive to produce. I want to make the process a whole lot more like a scientific experiment, where you test and observe multiple samples while adjusting a single variable.

Continue reading

Print Your Own Robot: Part 9

This will be an update on the things I’ve learned molding quadrupeds over the last couple of months and some previews of the new robots I’ll be experimenting with in the next few weeks. To start, I’ve had the chance to run a gaggle of design experiments ranging from small changes to the particular silicone I’ve been casting, to more radical changes to how the whole plionics manufacturing process comes together.

Continue reading

First to Blog

This is a response, more of a high five, to Zach Hoeken’s post up on MAKE: “First to File? Nah, First to Blog!” Basically his post was a series of ideas that have been hanging around in his notebooks, possibly eligible for patents, that he would rather see out there and made in the world than locked away between the pages of a personal sketchpad forever or exploited to the chagrin of mankind by some unruly technological entity, wrapped up in complex patent labyrinths, and never put to a more just use than in sole product from a sole company (see 3d Systems vs the Form 1, Patent Busting3d printing patent challenges, etc). Even worse is the possibility of an idea getting patented and never implemented, only used as a club to hit innovators over the wallet (see Intellectual Ventures). I’m in favor of this. Truth be told I’m pretty aggressively anti patent, which is why all of my recent robotics projects have been released into the open source. Although I realize there’s a difficult road ahead, finding ways to keep funding innovation and novel IP in the world patent abolitionists have been gunning for, I believe open access to information and the network effects it generates far far and away outweigh the small innovation boost you get from researchers confident they’ll be the only people able to profit from the particular idea they’re developing.

Continue reading

Print Your Own Robot: Part 8

Visit my soft robot Flickr collection for some detailed documentation and more info on the methods behind this latest robot.

Quadrupeds. I’ve been dreaming about quadrupeds. I’ve been hunting for challenges to test my methods and improve the engineering on the whole “print and cast a soft robot” thing (I really need to come up with a name for this… “Borgatronics?”). I started with tentacles because they were easy to design, easy to test, and symmetrical.

Continue reading

Print Your Own Robot: Part 7

I am now the happy owner of a fully functional robotic tentacle. I’m pleased. After a few iterations, some hair pulling, and some welcome help from programmer, hacker, and generally pleasant person: TQ, the Trefoil Tentacle is now waving around in disconcerting glory. You can find a whole set of high res images of it here.

If you’re craving an animated GIF of a tentacle wiggling about, this here’s your image.
Continue reading

Print Your Own Robot: Part 6

Last week I headed up to Viridis3d for some more hacking. We got some beautiful results using some vaccuum casting with the trefoil design, parts printed for both the internals and outer shell of the quadruped, and schemes for tempting new mechanisms. All in all it’s been really exciting seeing the progress. Also, I have some updates on controlling the trefoil tentacle with an arduino powered set of air solenoids.

Continue reading

Print Your Own Robot: Part 5 29c3

I’ve finally gathered my wits after a whirlwind tour of Europe, starting at CCC, giving some talks and connecting up with potential collaborators, to Berlin to meet hackers I hadn’t seen in years, to Brussels to play with some material science experiments in impact resisting plastics. While at CCC I gave three talks, two lightning talks on digital fabrication and the strange world of news advertisement, and a 15 minute talk on the methodology and philosophy behind my soft robots.

Continue reading

Print Your Own Robot: Part 4

I have lots of updates to share. First, there’s a new video of the latest tentacle prototype in action below the fold. Second, We’ve made some excellent progress on the method of manufacture, reliability, and repeatability of the designs we’re producing. It’s almost at the point where we need to figure out a good real-world experiment to test our ideas against. I’m currently torn between creating a grasper and something that walks. Jim and I have been working out ways of getting a self contained power source inside of a soft robot, and it seems like we might be able to use a canister of compressed gas to do everything from timing movements to articulating valves. I’m working out ways of integrating peristaltic pumps and timing mechanisms that will be simple to prototype… which is a pretty tall order. However, I think a combo of laser cut bits and creative molding can have this one solved.

Continue reading