SOLS Adaptiv – A Wearable Soft Robot

I was hired by SOLS to help out with their Adaptiv project. The idea was to showcase the procedural modeling techniques, materials, and technologies behind their printed insoles with a futuristic robotic shoe. Jordan Dialto, the industrial design lead at SOLS, approached me in my capacity as lead scientist at Super-Releaser to make a prototype soft robot shoe that could change shape and fit in response to the wearer.

Screen Shot 2015-01-29 at 3.33.53 PM
The external shell (purple) retaining skeleton (grey) and soft actuators (teal) joined together with reference pins to be inserted into the original mesh.

The project started out with an external shell modeled by Continuum Fashion. Although the design was elegant, this posed a challenge for introducing the robotic elements and the engineered components that would stitch everything together. Since the external shell was generated in a mesh CAD program, it didn’t fit into SolidWorks’ reference frame. This meant using the mesh as a reference and generating a simplified surface to extrude the soft robot elements and retaining skeleton from. Continue reading

“Hard Problems? Soft Robots!” at BsidesHH 2014

I’ve been going to CCC for a while. I’ve given some talks (mostly on the lightning talk track) and have generally had a good time. More and more, though, I’ve gotten interested in gatherings that orbit big events like CCC, Maker Faire, and HOPE. Unconferences, Bsides, and nether-conferences like BarCamp are less formal than a traditional conference, and often have the kind of wiggle room for instant breakout sessions and long Q&A.

Continue reading

Print Your Own Robot: Part 10

Long time no see, folks. I’ve got some great news for you. I’ve finally found a method for getting super complicated geometry locked inside of a seamless skin. It’s taken a lot of prototypes to get here, but I think the results are more than worth the effort. There are some wrinkles to iron out (which I’ll get to below) but all in all I think I’m incredibly close to rapid-fire casting working quadrupeds, ready to go in just a few short steps after popping the mold. In other good news, I’ll be dropping some files very soon which should get you your very own working quadruped using any FDM printer. All you need is a Makerbot or similar, a few hours, and some casting materials to have an exact duplicate of my most sophisticated robot to date.

Continue reading

Print Your Own Robot: Part 9

My latest quadruped design

This will be an update on the things I’ve learned molding quadrupeds over the last couple of months and some previews of the new robots I’ll be experimenting with in the next few weeks. To start, I’ve had the chance to run a gaggle of design experiments ranging from small changes to the particular silicone I’ve been casting, to more radical changes to how the whole plionics manufacturing process comes together.

I’ve discovered that molding complex channels of tubing can be extremely difficult, and the CAD equally infuriating. I’m discovering some automatic routing tools in SolidWorks that could streamline the process, but there might be another solution that sidesteps that whole mess entirely. It’s possible to cast around silicone tubing that’s already connecting up all the interior geometry. So, what I’d have to do to get the design working is build the cores with little fastenings for plugging in tubing and make sure all the tubes have enough clearance to get past one another. I’m anticipating the world of reality doesn’t let me off the hook that easily, but it’s a start. Continue reading

National Robotics Week

Earlier this week I had the opportunity to show off the soft robots I’ve been developing at the National Robotics Week: Extending Human Reach event held at HUGE labs and facilitated by Honeybee Robotics. I was originally excited at the prospect of seeing the incredibly varied group, the police standing next to bomb sniffing drones, LittleBits showing off tiny circuit construction kits, Honeybee demonstrating the lab tools they designed that are currently roving around on Mars. It was a shame I didn’t have more time away from my booth to check out the tech everyone else brought, but the general crowd was so excited, so eager to chat about robots and what I was presenting, that the event was almost over before I caught my breath. Thankfully Numi was there, helping set up, answering questions, and generally being awesome.

So, now I’ve got a pile of business cards representing science minded folks to email, some new medical applications to push the next prototypes towards, and an urge to show this stuff off to the public more.

Four stars. Would present again.

Also, download some robots.

Print Your Own Robot: Part 8

Visit my soft robot Flickr collection for some detailed documentation and more info on the methods behind this latest robot.

Quadrupeds. I’ve been dreaming about quadrupeds. I’ve been hunting for challenges to test my methods and improve the engineering on the whole “print and cast a soft robot” thing (I really need to come up with a name for this… “Borgatronics?”). I started with tentacles because they were easy to design, easy to test, and symmetrical.

Waxes suspended in the silicone.

They’ve made a lot of progress, but it’s time to turn to other designs. I’ve produced a few prototypes along one main design, and have discovered many things. I’m going to try and explain my logic behind the design and some of the major changes I intend to make in the next version. I’m also going to tell you all the myriad ways I went wrong in this design and the things I’ve done to try and make it right.

This is going to be a pretty dry technical post on the industrial design aspects of the robots I’ve been developing. I promise you entertainment and levity aplenty in the future. For now, we grump about casting flaws, mold design, and process control. Continue reading

Print Your Own Robot: Part 7

I am now the grinning overlord of a fully functional robotic tentacle. I’m quite pleased. After a few iterations, some hair pulling, and some utterly excellent help from programmer, hacker, and generally awesome person TQ, the Trefoil Tentacle is now waving about in all its eerie undulating glory. You can find a whole set of high res images of it here.

If you're craving an animated GIF of a tentacle wiggling about, this here's your image.

The control scheme is pretty simple: a barebones visual interface in Processing sends signals to an Arduino. From there, it switches the low power signal to high power via a Darlington transistor. The transistor switches each of 3 solenoid valves on and off, providing air to each of the 3 bladders inside of the silicone tentacle. The valves operate on a really slow PWM, their duty cycle determining how much air makes it to each bladder. Since there’s a bleed I can control on the system, I don’t have to worry about pumping air both in and out. I just adjust how much time the valves spend on, and the tentacle does it’s routine. All of the code for the setup is here on Adafruit’s forum. Continue reading

Print Your Own Robot: Part 6

Last week I headed up to Viridis3d for some more hacking. We got some beautiful results using some vaccuum casting with the trefoil design, parts printed for both the internals and outer shell of the quadruped, and schemes for tempting new mechanisms. All in all it’s been really exciting seeing the progress. Also, I have some updates on controlling the trefoil tentacle with an arduino powered set of air solenoids.

An assembled trefoil mold, in the vacuum chamber.

One of the confounding factors in getting this flavor of robot moving predictably has been how difficult it is to control wall thickness and bubble inclusions when casting the final silicone pieces. Like almost every mold, you do the best you can, try to create a nice, sterile, well ordered universe, and hope. Although Dragon Skin has performed really well as a durable, flexible silicone, it has the nasty habit of trapping bubbles in inconvenient spots when curing. Many silicones have a thin, pancake syrup consistency when mixed, but Dragon Skin is much more like honey or molasses, meaning it’s really easy to trap bubbles in the mix while stirring and have them set in place when everything’s curing. A good solution for the problem is pulling them back out with a vacuum chamber. Continue reading

Print Your Own Robot: Part 5 29c3

I’ve finally gathered my wits after a whirlwind tour of Europe, starting at CCC, giving some talks and connecting up with potential collaborators, to Berlin to meet hackers I hadn’t seen in years, to Brussels to play with some material science experiments in impact resisting plastics. While at CCC I gave three talks, two lightning talks on digital fabrication and the strange world of news advertisement, and a 15 minute talk on the methodology and philosophy behind my soft robots. I’ll be uploading the short talks sometime soon, but for now please see my soft robots lecture after the jump. Continue reading

Print Your Own Robot: Part 4

I have lots of updates to share. First, there’s a new video of the latest tentacle prototype in action below the fold. Second, We’ve made some excellent progress on the method of manufacture, reliability, and repeatability of the designs we’re producing. It’s almost at the point where we need to figure out a good real-world experiment to test our ideas against. I’m currently torn between creating a grasper and something that walks. Jim and I have been working out ways of getting a self contained power source inside of a soft robot, and it seems like we might be able to use a canister of compressed gas to do everything from timing movements to articulating valves. I’m working out ways of integrating peristaltic pumps and timing mechanisms that will be simple to prototype… which is a pretty tall order. However, I think a combo of laser cut bits and creative molding can have this one solved. Continue reading