“Soft Robots in Space” talk at SpaceApps NYC

I spoke at the NYC NASA SpaceApps conference last weekend about how soft robots might end up in space in the next few years. I covered mechanical counterpressure suits, exercise on the International Space Station, enhancing strength on EVA’s, and how space turns your heart into a sphere. Stick around for the Q&A segment at the end, where I get to field some questions from real-life astronaut Catherine Coleman.

You can see my slides here.

Cover image by ZEISS Microscopy.

Soft Robotics Talks at NYCResistor

I’m trying to get more people playing with soft robots. I’m releasing open source design files, tutorials, and now teaching classes. They’re a useful tool to add to any roboticist’s engineering toolbox, and if they were more widely known I think we’d see them outside the research lab and applied to practical problems.

I’ve taught a couple of seminars on soft robotics (demonstrating how I fabricate the Glaucus) over the last few weeks. I’m also giving a few talks soon – one at a seminar for engineering simulations, and another at NYC’s Spaceapps Hackathon.

You can find more information on the last few classes on the Soft Robotics Technology Meetup page, the ACM-NYC Meetup page, and NYCResistor’s blog. I’ve embedded video of the ACM talk below.

 

Title photo by David Rey. You can find more of his photos of this event at the NYC Soft Robotics Technology Group Meetup here.

“Hard Problems? Soft Robots!” at BsidesHH 2014

I’ve been going to CCC for a while. I’ve given some talks (mostly on the lightning talk track) and have generally had a good time. More and more, though, I’ve gotten interested in gatherings that orbit big events like CCC, Maker Faire, and HOPE. Unconferences, Bsides, and nether-conferences like BarCamp are less formal than a traditional conference, and often have the kind of wiggle room for instant breakout sessions and long Q&A.

Continue reading

Print Your Own Robot: Part 10

Long time no see, folks. I’ve got some great news for you. I’ve finally found a method for getting super complicated geometry locked inside of a seamless skin. It’s taken a lot of prototypes to get here, but I think the results are more than worth the effort. There are some wrinkles to iron out (which I’ll get to below) but all in all I think I’m incredibly close to rapid-fire casting working quadrupeds, ready to go in just a few short steps after popping the mold. In other good news, I’ll be dropping some files very soon which should get you your very own working quadruped using any FDM printer. All you need is a Makerbot or similar, a few hours, and some casting materials to have an exact duplicate of my most sophisticated robot to date.

Continue reading

Print Your Own Robot: Part 9

My latest quadruped design

This will be an update on the things I’ve learned molding quadrupeds over the last couple of months and some previews of the new robots I’ll be experimenting with in the next few weeks. To start, I’ve had the chance to run a gaggle of design experiments ranging from small changes to the particular silicone I’ve been casting, to more radical changes to how the whole plionics manufacturing process comes together.

I’ve discovered that molding complex channels of tubing can be extremely difficult, and the CAD equally infuriating. I’m discovering some automatic routing tools in SolidWorks that could streamline the process, but there might be another solution that sidesteps that whole mess entirely. It’s possible to cast around silicone tubing that’s already connecting up all the interior geometry. So, what I’d have to do to get the design working is build the cores with little fastenings for plugging in tubing and make sure all the tubes have enough clearance to get past one another. I’m anticipating the world of reality doesn’t let me off the hook that easily, but it’s a start. Continue reading

First to Blog

This is a response, more of a high five, to Zach Hoeken’s post up on MAKE: “First to File? Nah, First to Blog!” Basically his post was a series of ideas that have been hanging around in his notebooks, possibly eligible for patents, that he would rather see out there and made in the world than locked away between the pages of a personal sketchpad forever or exploited to the chagrin of mankind by some unruly technological entity, wrapped up in complex patent labyrinths, and never put to a more just use than in sole product from a sole company (see 3d Systems vs the Form 1, Patent Busting3d printing patent challenges, etc). Even worse is the possibility of an idea getting patented and never implemented, only used as a club to hit innovators over the wallet (see Intellectual Ventures). I’m in favor of this. Truth be told I’m pretty aggressively anti patent, which is why all of my recent robotics projects have been released into the open source. Although I realize there’s a difficult road ahead, finding ways to keep funding innovation and novel IP in the world patent abolitionists have been gunning for, I believe open access to information and the network effects it generates far far and away outweigh the small innovation boost you get from researchers confident they’ll be the only people able to profit from the particular idea they’re developing. Continue reading

National Robotics Week

Earlier this week I had the opportunity to show off the soft robots I’ve been developing at the National Robotics Week: Extending Human Reach event held at HUGE labs and facilitated by Honeybee Robotics. I was originally excited at the prospect of seeing the incredibly varied group, the police standing next to bomb sniffing drones, LittleBits showing off tiny circuit construction kits, Honeybee demonstrating the lab tools they designed that are currently roving around on Mars. It was a shame I didn’t have more time away from my booth to check out the tech everyone else brought, but the general crowd was so excited, so eager to chat about robots and what I was presenting, that the event was almost over before I caught my breath. Thankfully Numi was there, helping set up, answering questions, and generally being awesome.

So, now I’ve got a pile of business cards representing science minded folks to email, some new medical applications to push the next prototypes towards, and an urge to show this stuff off to the public more.

Four stars. Would present again.

Also, download some robots.

Print Your Own Robot: Part 8

Visit my soft robot Flickr collection for some detailed documentation and more info on the methods behind this latest robot.

Quadrupeds. I’ve been dreaming about quadrupeds. I’ve been hunting for challenges to test my methods and improve the engineering on the whole “print and cast a soft robot” thing (I really need to come up with a name for this… “Borgatronics?”). I started with tentacles because they were easy to design, easy to test, and symmetrical.

Waxes suspended in the silicone.

They’ve made a lot of progress, but it’s time to turn to other designs. I’ve produced a few prototypes along one main design, and have discovered many things. I’m going to try and explain my logic behind the design and some of the major changes I intend to make in the next version. I’m also going to tell you all the myriad ways I went wrong in this design and the things I’ve done to try and make it right.

This is going to be a pretty dry technical post on the industrial design aspects of the robots I’ve been developing. I promise you entertainment and levity aplenty in the future. For now, we grump about casting flaws, mold design, and process control. Continue reading