Speaking about Soft Robots at NASA Ames

Official Visitor

Mark Micire (research scientist at the Intelligent Robotics Group at NASA Ames) and Yun Kyung Kim (human-robot​ iInteraction​ ​designer at NASA Ames) were incredibly generous in offering me an opportunity to speak with the AstroBee and Super Ball Bot groups at NASA Ames. We’ve been keeping an eye on Super Ball Bot over at Super-Releaser, particularly because of the way the teams working on it are bringing simulation and iterative prototyping together to solve the open-ended problems involved in designing a robust control system for bots that can configure themselves into nearly infinite shapes.

The talk focused on the opportunities to use compliant materials to replicate organic mechanisms, the ways Super-Releaser solves problems in soft robotics, and the way we integrate multiple disciplines into our research. Afterwards I was able to see the work of the Super Ball Bot team – developing novel compliant actuators in addition to refining the systems that power their current Ball Bot prototypes.

I was also able to see the AstroBee, which was being evaluated on the biggest granite surface plate I’ve ever seen. I got to talk with Yun about her experience as a designer integrating into a team of engineers, which is its own challenge in itself, and the goals of the AstroBee project. It’s going to serve as a platform to develop behaviors for human/machine interaction in 0g, which is a problem I’ve never even considered.

Speaking about R&D architectures for novel technologies at JHU APL’s REDD talks series

Jacob Alldredge invited me to speak at APL to speak with their research staff as part of their REDD Talks series. I presented a talk on the research process Kari Love and I developed at Super-Releaser for rapidly evaluating and developing novel technologies: The Physical Feedback Loop.

It was encouraging speaking with scientists and engineers working at the leading edge of their fields about how they picture their own research processes, and how they tackle problems in novel areas. I got some fantastic feedback from project leads at APL, and was sincerely impressed by their internal manufacturing processes which produce everything from novel 3d printed metal compounds to NASA satellites.

Tessellating Box

Last night at Resistor Trammell and I poked around with a project to put on the space’s brand spanking new Shopbot. I like tessellating things. Trammell likes putting computationally generated patterns on things.

Screen Shot 2016-01-12 at 4.10.31 PM

Screen Shot 2016-01-12 at 4.09.09 PM

The plan is to take the box I designed, which will be built from six identical routed panels with hidden finger joints, and apply patterns to the outer faces. I’m excited to see this thing get cut.

SOLS Adaptiv – A Wearable Soft Robot

I was hired by SOLS to help out with their Adaptiv project. The idea was to showcase the procedural modeling techniques, materials, and technologies behind their printed insoles with a futuristic robotic shoe. Jordan Dialto, the industrial design lead at SOLS, approached me in my capacity as lead scientist at Super-Releaser to make a prototype soft robot shoe that could change shape and fit in response to the wearer.

Screen Shot 2015-01-29 at 3.33.53 PM
The external shell (purple) retaining skeleton (grey) and soft actuators (teal) joined together with reference pins to be inserted into the original mesh.

The project started out with an external shell modeled by Continuum Fashion. Although the design was elegant, this posed a challenge for introducing the robotic elements and the engineered components that would stitch everything together. Since the external shell was generated in a mesh CAD program, it didn’t fit into SolidWorks’ reference frame. This meant using the mesh as a reference and generating a simplified surface to extrude the soft robot elements and retaining skeleton from. Continue reading

Glowy Crystal Ring

Do you like 3D printing, mold making, industrial design, jewelry, and RGB LED’s? You’re in luck, then. I just finished this tutorial for Adafruit and think it’s well worth a look.

In this project, I attempted to make an Arduino powered device that was easy to use, easy to make, and self contained. Every 3d printed component can be done in a single build without support material. The ring has a battery, switch, and USB port. Once it’s together, all you need to charge or reprogram it is a USB Micro cable.

insta004

Soft Robotics Talks at NYCResistor

I’m trying to get more people playing with soft robots. I’m releasing open source design files, tutorials, and now teaching classes. They’re a useful tool to add to any roboticist’s engineering toolbox, and if they were more widely known I think we’d see them outside the research lab and applied to practical problems.

I’ve taught a couple of seminars on soft robotics (demonstrating how I fabricate the Glaucus) over the last few weeks. I’m also giving a few talks soon – one at a seminar for engineering simulations, and another at NYC’s Spaceapps Hackathon.

You can find more information on the last few classes on the Soft Robotics Technology Meetup page, the ACM-NYC Meetup page, and NYCResistor’s blog. I’ve embedded video of the ACM talk below.

 

Title photo by David Rey. You can find more of his photos of this event at the NYC Soft Robotics Technology Group Meetup here.

“Hard Problems? Soft Robots!” at BsidesHH 2014

I’ve been going to CCC for a while. I’ve given some talks (mostly on the lightning talk track) and have generally had a good time. More and more, though, I’ve gotten interested in gatherings that orbit big events like CCC, Maker Faire, and HOPE. Unconferences, Bsides, and nether-conferences like BarCamp are less formal than a traditional conference, and often have the kind of wiggle room for instant breakout sessions and long Q&A.

Continue reading

Print Your Own Robot: Part 10

Long time no see, folks. I’ve got some great news for you. I’ve finally found a method for getting super complicated geometry locked inside of a seamless skin. It’s taken a lot of prototypes to get here, but I think the results are more than worth the effort. There are some wrinkles to iron out (which I’ll get to below) but all in all I think I’m incredibly close to rapid-fire casting working quadrupeds, ready to go in just a few short steps after popping the mold. In other good news, I’ll be dropping some files very soon which should get you your very own working quadruped using any FDM printer. All you need is a Makerbot or similar, a few hours, and some casting materials to have an exact duplicate of my most sophisticated robot to date.

Continue reading

Refurbishing NYC’s Historic JJ Hat Center

A few months ago I was commissioned to restore a storefront over on 5th and 32nd st, JJ Hat Center. They’re long time clients, partners of the good folks over at Pork Pie Hatters. I’ve done a lot of work for them over the years, building their website, designing custom hat blocks, making marketing materials, and creating the branding for their series of handmade hats. This was a whole other level of project, though.

To start, the building used to be an IBM adding machine factory and showroom. When JJ’s took it over, they installed a lovely wood exterior. So, on the plus side, there is a lot of old NYC richness both inside and out. On the downside, the wood exterior had fallen apart in the intervening years. Part of my job was to see through the decades of wear and tear and come up with a plan for refurbishing everything to resemble the original without spending thousands on custom parts. Fortunately my friend Clark put me in touch with a few very talented carpenters. So, with some meetings and design drawings, they were rolling on building the elements for the exterior. Continue reading