Speaking about Soft Robots at NASA Ames

Official Visitor

Mark Micire (research scientist at the Intelligent Robotics Group at NASA Ames) and Yun Kyung Kim (human-robot​ iInteraction​ ​designer at NASA Ames) were incredibly generous in offering me an opportunity to speak with the AstroBee and Super Ball Bot groups at NASA Ames. We’ve been keeping an eye on Super Ball Bot over at Super-Releaser, particularly because of the way the teams working on it are bringing simulation and iterative prototyping together to solve the open-ended problems involved in designing a robust control system for bots that can configure themselves into nearly infinite shapes.

The talk focused on the opportunities to use compliant materials to replicate organic mechanisms, the ways Super-Releaser solves problems in soft robotics, and the way we integrate multiple disciplines into our research. Afterwards I was able to see the work of the Super Ball Bot team – developing novel compliant actuators in addition to refining the systems that power their current Ball Bot prototypes.

I was also able to see the AstroBee, which was being evaluated on the biggest granite surface plate I’ve ever seen. I got to talk with Yun about her experience as a designer integrating into a team of engineers, which is its own challenge in itself, and the goals of the AstroBee project. It’s going to serve as a platform to develop behaviors for human/machine interaction in 0g, which is a problem I’ve never even considered.

“Iterating on Soft Robots” talk at Maker Faire

Kari Love and I gave a talk at Maker Faire last year detailing how the maker mindset (tinkering to get an intuitive sense of the rules governing the system, hands-on learning, fast frugal iteration, and sharing) can be transformative for research into fundamental technologies and chronically intractable problems.

The key factor is going from zero to a working understanding of the ground truths underlying the problem you’re trying to solve as quickly as possible. From historical surveys of how transformative technologies have been developed in the past (like TRIZ), deeply focused research is no match for playful learning and interdisciplinary exploration.

These are the techniques we use at Super-Releaser to get things done given how new the field is and how much it relies on an intuitive understanding of the mechanics of soft systems. When there isn’t a robust framework to simulate before experimentation, you need to rely on experience and spot tests.

Aidan wowing the Maker Faire audience with his soft robot designs

We were also very proud to have our intern, Aidan Leitch, give his own talk on his soft robotics research. It was very well attended and people seemed excited to see live demos of his soft robot designs.

Super-Releaser has signed a book deal with Maker Media

Super-Releaser has begun work on a book on soft robotics for Maker Media. Kari Love and I are writing a book that provides a history of the field of soft robotics, tutorials demonstrating its basic principles, more sophisticated projects like a control system and entire soft robots, and the potential of applied soft robotics from medical devices to human spaceflight to interplanetary exploration. As far as we can tell this will be the first book published demonstrating practical soft robotics.

The Kestrel – an open source soft robotic gripper we’ve designed for the book which you’ll be able to replicate at home

We are working with Roger Stewart to complete the text before the end of this year. Fingers crossed it will be available in bookstores in early 2018.

Super-Releaser Graduates from NYCEDC’s ELAB Program

Super-Releaser was selected to participate in NYCEDC’s 2016 Elab mentorship program with our Neucuff medical device concept.

Elab is a six month program organized by Mary Howard that supports early-career researchers in the medical field, providing them with classes, business development expertise, mentorship, and access to resources like venture funding, legal experts, and research databases. Super-Releaser was selected to continue the development of our Neucuff and explore options for developing it into a fully realized medical device.

Kari Love and I graduated from the program following a well received final summation of our research on the Neucuff and its transformative potential for children suffering from Cerebral Palsy.

You can learn more about the Elab program here.

Speaking about physical prototyping and soft robotics research at Construct3d at Duke University

Matt Griffin of Ultimaker invited me to speak at Construct3d, an event they organized with Duke University.

Construct3D was a conference bringing together engineers, designers, coders, and educators all advancing research and physical fabrication on the cutting edge of their fields. I used the platform to speak about our research process at Super-Releaser, and how it can be applied to problem solving and R&D for emerging technologies.

I was also invited to speak on a panel moderated by Matt Griffin that included Sean Charlesworth, Michael Curry, Darlene Farris-LaBar, Eric Schimelpfenig, and Laura Taalman. I had the opportunity to speak about my history in special effects animatronics, the role of 3d printing in my research at Super-Releaser, lessons learned in working with research clients, and what’s next for Super-Releaser.

The physical fabrication panel

You can learn more about the event in Ultimaker’s wrap up post here.

Speaking about R&D architectures for novel technologies at JHU APL’s REDD talks series

Jacob Alldredge invited me to speak at APL to speak with their research staff as part of their REDD Talks series. I presented a talk on the research process Kari Love and I developed at Super-Releaser for rapidly evaluating and developing novel technologies: The Physical Feedback Loop.

It was encouraging speaking with scientists and engineers working at the leading edge of their fields about how they picture their own research processes, and how they tackle problems in novel areas. I got some fantastic feedback from project leads at APL, and was sincerely impressed by their internal manufacturing processes which produce everything from novel 3d printed metal compounds to NASA satellites.

ShopBot Camera Arm – Handsfree Project Documentation

I’ve been wanting an extra set of hands to hold a camera while I document projects for a long time. Kari and I are writing a book for MAKE all about soft robotics, and I figure there’s probably not going to be a better time to have a serious documentation setup than when someone’s paying me to do a good job at it. Since NYC Resistor just got a ShopBot and I’ve been meaning to get back into plywood fab for years, it seemed like a pretty auspicious syzygy. If you’d like to replicate this design for yourself, you can find the source files and project notes here. You can also see my photos from the cutting and assembly of the project here. Continue reading

Toy Design Studio at NUVU

In 2013, I was splitting my time between running Sleek and Destroy out of my apartment in Brooklyn, and getting absolutely covered in 3d printing dust at Dr. Jim Bredt’s lab while hacking on my first experiments in soft robotics. While one one of those journeys up to Somerville to print, Tess Aquarium pinged to see whether I’d be available to teach a class on digital fabrication and toys at NUVU. I was excited about the opportunity. Also, I was terrified that I’d be creating a summer’s worth of curriculum and teaching a group of eleven students ranging between age 11 and 16 in just a couple of weeks.

A Minecraft inspired bot created by Anna, Felipe, and Patrik out of laser cut plywood, servos, an arduino, and printed tank treads.

The plan I came up with was to start with deconstructing toys, teach some CAD tools, give the students the basics for prototyping with digital tools, and end up with a pretty well resolved final project that was a toy of their own creation. That plan broadly worked, but I also had to do a lot of learning and bootstrapping along the way. Continue reading

Tardis Ring

dsc_8416Years ago, I designed a series of Tardis and Dalek rings as an experiment in SolidWorks modeling. I wanted to have a ring design that would support a sculptural element with a shank that would change proportionally to feel natural in a wide variety of ring sizes. I was also way into Dr. Who at the time. Continue reading